

LoopGaussian: Creating 3D

Cinemagraph with Multi-view Images via Eulerian Motion Field

Jiyang Li*, Zhejiang University Lechao Cheng*, Hefei University of Technology Zhangye Wang, Zhejiang University Tingting Mu, The University of Manchester Jingxuan He[⊠], Hefei University of Technology

*Equal contribution. [™]Corresponding author.

MM 2024 Oral

Oct. 2024

Contents

- Proposed Method: LoopGaussian
- Experimental Results

What is a Cinemagraph?

A Cinemagraph is a combination of a still image and a video, where most of the scene is stationary, while a section moves on a continuous loop.

--Adobe

The train to Machu Picchu

Client: Chopard

Avenue Matignon

The images above are from ©https://cinemagraphs.com

Related Work of Cinemagraph

- Traditional manual generation method
 - Limitations: requires a lot of manual work by skilled artist

Automatic generation method

[1]

[1]

[2]

Limitations: requires pre-training on large datasets

Limitations: limited to image space, cannot change viewing point

[1] Animating Pictures with Eulerian Motion Fields.[2] Controllable Animation of Fluid Elements in Still Images.

Purpose of Our Work

Create an authentic 3D cinemagraph from multi-view images of a stationary scene by an Eulerian motion field.

(a) Multi-view Images

(b) Eulerian Motion Field

(c) Loopable Video

3D Gaussian Splatting

Ray Ray

Tile-based rendering

The rendering image are divided into several tiles, and all tiles can be rendered in parallel.

Loss Function The error between the rendering image and the corresponding ground truth image is used as the loss

function for training.

$$\mathcal{L} = (1 - \lambda)\mathcal{L}_1 + \lambda \mathcal{L}_{\text{D-SSIM}}$$

[1] 3D Gaussian Splatting for Real-Time Radiance Field Rendering.[2] A Survey on 3D Gaussian Splatting.

Pipeine

Artifact-free Scene Representation

Eccentricity regularization

$$\mathcal{L}_{\text{shape}} = \frac{1}{|\mathbf{G}|} \sum_{G_i \in \mathbf{G}} 1 - \frac{\min^2(s_i)}{\max^2(s_i)}$$

Make Gaussian points not too sharp, as close to sphere as possible to avoid glitches when the scene deforms.

Total Loss Function

$$\mathcal{L}_{3D-GS} = \eta \left((1 - \beta) \mathcal{L}_1 + \beta \mathcal{L}_{D-SSIM} \right) + (1 - \eta) \mathcal{L}_{shape}$$

Motivation

Similar objects always have similar movement trends.

How to find similar objects in scene?

SuperGaussian Clustering

How to describe the motion of object?

Eulerian perspective v.s. Lagrangian perspective

SuperGaussian Autoencoder Architecture

Endoer Architecture

SuperGaussian Clustering

Voxelization

Clustering

Eulerian perspective v.s. Lagrangian perspective

Lagrangian perspective

Eulerian perspective

- Lagrangian perspective describes the motion of the particle itself.
- Eulerian perspective describes the motion occurring at a fixed point in space.

Progressive Eulerian Motion Field Estimation

- Sparse Velocity Field Estimation Moving each cluster to its nearest neighbor
- Dense Velocity Field Estimation
 Using Kriging interpolation
- Eulerian Motion Field Estimation

Fitting the velocity field with an

MLP

Table 1: Comparison resultsof average optical flow maps.

	PSNR↑	SSIM↑	LPIPS \downarrow
Li [20]	22.959	0.915	0.233
Ours	24.868	0.928	0.208

Table 2: Comparison resultsof generated videos.

	FVD ↓	
Li [20]	1174.948	
Ours	933.824	

Comparisons with 3D Cinamagraph^[1]

[1] 3D Cinemagraphy from a Single Image. CVPR2023.

The 3D cinemagraph obtained by our method can be rendered from any viewpoint.

Novel View Synthesis

Ablation Study

 Comparison of different interpolation methods
 Kriging maintains the integrity of the object and motion continuity is better..

Interpolation Methods

Motion Amplitude

• Effect of the motion amplitude

Higher ω results in more intense scene movement.

Ablation Study

Voxel Resolution Selection

Empirically chosen $\lambda = 0.04$. Balances scene segmentation with information preservation.

Voxel Resolutions

Conclusion

- We introduce LoopGaussian, a novel framework for generating authentic 3D cinemagraphs from multi-view images of static scenes.
- No extensive pre-training on large dataset required.
- Outperforms previous methods limited to 2D image space by reconstructing the 3D geometry of the scene, and experiments demonstrate the effectiveness of our method.

Limitations

- Primarily designed for single objects and faces challenges with large-scale scenarios.
- Restricted to soft non-rigid bodies like flags and tree branches.

THANK YOU FOR WATCHING

Oct. 2024